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The black hole information paradox [1, 2] has posed a serious challenge to fundamental

physics for over three decades. Hawking’s semi-classical argument predicts that the process

of black hole formation and evaporation is not unitary [3]. On the other hand, there is

evidence from string theory that the formation and evaporation of black holes should be

consistent with the basic principles of quantum mechanics [4]. Nonetheless, the Hawking

effect, discovered nearly 30 years ago, is generally accepted as very credible and considered

to be an essential ingredient of the as yet unknown correct theory of quantum gravity.

Recently, Horowitz and Maldacena (HM) proposed a final-state boundary condition

(FBC) [4] in an attempt to reconcile the unitarity of black hole evaporation with Hawking’s

semi-classical reasoning for massless scalar fields. The essence of the proposal is to impose a

unique final-state boundary condition at the black hole singularity [4]. The final boundary

state is an entangled state of the collapsing matter and infalling Hawking radiation [4 – 9].

When a black hole evaporates, particles are created in entangled pairs with one falling

into the black hole and the other radiated to infinity. The projection of the final boundary

state at the black hole singularity collapses the state into one associated with the collapsing

matter and transfers the information to the outgoing Hawking radiation [4 – 9]. One of the

critical assumptions in the HM proposal is that the internal quantum state of the black

hole can be represented by entangled states of collapsing matter and infalling Hawking

radiation. This conjecture is important because the final state boundary condition of the

HM proposal is based on this entangled internal quantum state [4]. One of us showed that

the HM conjecture is provable in the special case of collapsing gravitational shell of the

Schwarzschild black hole by considering a massless scalar field [8].

From a mathematical point of view, the Hawking effect arises from the logarithmic

phase discontinuity of the wave functions [10]. Fermionic Hawking radiation is therefore

also expected to exist (eg. neutrino radiation) [11 – 14], and has recently been shown to

arise as a tunnelling effect [15]. It is therefore an interesting question as to whether the

HM conjecture is also applicable to Dirac fields as well [7]. It is non-trivial to show that the

HM conjecture is provable in the case of Dirac fields because unlike the case of the scalar

fields one needs to take into account the complicated boundary conditions for the spinor

fields. In this paper we consider this question and construct a modifiedFBC for massless

neutrino fields for a shell that gravitationally collapses to a Schwarzschild black hole. We

then show that there is an entanglement between the quantum states of the collapsing shell

inside of the event horizon and the infalling Hawking radiation confined in the interior of

the black hole.

For s-wave collapse, a stationary Schwarzschild black hole has an effective (1+1) di-

mensional metric represented by [11]

ds2 = −

(

1 −
2M

r

)

dt2 +
dr2

(

1 − 2M
r

) (1)

where M is the mass of the black hole. At r = 2M , the Schwarzschild spacetime has an

event horizon. Extending our formulation to a more general (3 + 1) dimensional setting

is mathematically straightforward. The Levi-Civita connection coefficients Γλ
µν can be
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calculated by the Lagrange method [16] and are given by

Γr
tt =

(

1 −
2M

r

)

M

r2
, Γr

rr = −
M/r2

(

1 − 2M
r

) , and Γt
tr =

M/r2
(

1 − 2M
r

) . (2)

The gamma matrices are defined by γµ = eαµγ̄α where eαµ are tetrads and γ̄α are the

gamma matrices for the inertial frame [11]. For example, we obtain

γt =

(

1 −
2M

r

)1/2

γ̄0 and γr =

(

1 −
2M

r

)−1/2

γ̄1. (3)

The affine connection is then given by

Γµ = −
1

4
γν

(

∂µγ
ν + Γν

µλγ
λ
)

(4)

and the Dirac equation in the Schwarzschild spacetime is

[iγµ(∂µ + Γµ) −m]ψ = 0 (5)

or

i
∂

∂t
ψ = ω(r)

[

−iγ̄0γ̄1ω1/2(r)
∂

∂r

(

ω1/2(r)ψ
)

+mγ̄0ψ

]

, (6)

where m is the mass of the Dirac particle and ω(r) = |1− 2M/r|1/2 . For a neutrino field,

we have m = 0 and an additional constraint

(

1 + iγ5
)

ψ = 0 (7)

where γ5 is given by [11]

γ5 =











0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0











.

The positive frequency normal mode solution of (6) coming out of the past horizon of the

black hole is obtained as

ψ−
Ω

= ω−1/2(r)
[

ur(Ω)exp(−iΩu) +A−
Ω
vr(Ω)exp(−iΩv)

]

, (8)

where ur(Ω), vr(Ω) are 4 component spinors given by

ur(Ω) =

(

2Ω

0

)

⊗

(

1

0

)

, vr(Ω) =

(

0

2iΩ

)

⊗

(

1

0

)

,

and A−
Ω

is the fraction of the wave incoming from infinity. Since the Dirac field is massless

one can effectively regard ur(Ω), vr(Ω) as 2 component spinors. We will set A−
Ω

to be zero

when we match this solution with Kruskal components at H− (figure 1). The advanced

and retarded coordinates u, v are given by

u = t− r∗, v = t+ r∗, r∗ = r + 2M ln|r/2M − 1|. (9)
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Figure 1: The Kruskal extension of the Schwarzschild spacetime [22, 23]. In the region I, null

asymptotes H+ and H
−

act as the future and the past event horizons, respectively. The boundary

lines labelled J+ and J− are the future and the past null infinities, respectively, and i0 is the

spacelike infinity.

In Kruskal coordinates, the Schwarzschild metric becomes

ds2 = −2M
exp(−r/2M)

r
dūdv̄,

ū = −4Mexp(−u/4M), v̄ = 4Mexp(v/4M). (10)

Since the Killing vector in Kruskal coordinate is given by ∂/∂ū on H− , the (unnormalized)

positive frequency solution is

ψ̄Ω̄ = Ūū(Ω̄)exp(−iΩ̄ū), (11)

where Ūū(Ω̄) = 1
“

2M e−r/2M

r

”1/4

(

1

0

)

⊗

(

1

0

)

.

For a neutrino field, the helicity condition (7), implies that the spinors are of the form

(φ1iφ1φ2 − iφ2)
† (instead of (φ10φ20)

† ) and as a result the spinors in (8) and (11) should

be modified accordingly.

Using exp(−iΩu) = (|ū|/4M)i4MΩ and exp(−iΩv) = (|v̄|/4M)i4MΩ , and the fact that

ū < 0 in region I and ū > 0 in region II [8] (figure 1), the wave coming out of the past

horizon of the black hole on H− can be written as

ψ−
Ω

=
(

e2πMΩ
outφΩ + e−2πMΩ

inφΩ

)

/ (2cosh(4πMΩ))1/2 , (12)

where outφΩ vanishes inside the event horizon(region II) and inφΩ vanishes in the exterior

region of the black hole (region I). Since (|ū|)i4MΩ has a phase discontinuity of e4πMΩ

across the boundary surface H+ at which ū changes sign, the components outφΩ and inφΩ

– 3 –
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Figure 2: Penrose diagram of for a collapsing star [23]. The region I is a fragmentation of figure

1 including the region II (black hole). The null ray γ passes through the center of the collapsing

matter and emerges to form the event horizon H+ .

have the same phase discontinuity. We denote the normalized form of the Kruskal solu-

tion (11) as Ψ−
Ω

(as for the case of the scalar wave [17]). Here we have also used the fact

that v̄ = 0 on H− and the Dirac inner product (ψ−
Ω
, ψ−

Ω
) =

∫

dr(ψ−
Ω

)†γ̄0γ
0ψ−

Ω
[14] in the

derivation. The above definition of the positive frequency solution leads to the Bogoliubov

transformation [8] of the second-quantized fields and the ground state |Φ0〉in⊗out that looks

like the vacuum in the far past is the entangled state on the Fock space Hin ⊗Hout

|Φ0〉in⊗out =
1

(1 + e−8πMΩ)1/2

∑

n=0,1

(−1)ne−4nπMΩ|n̄Ω〉in ⊗ |nΩ〉out, (13)

where |nΩ〉α is the second-quantized fermion number state for a mode Ω in a Fock space

Hα and |n̄Ω〉α is the corresponding anti-particle state.

We now show that the Dirac field inside the event horizon also can be decomposed

into collapsing matter and the advanced wave incoming from infinity having similar form

as the Hawking radiation. The Penrose diagram of a collapsing star is shown in figure 2

including the region II (black hole). In this paper, we consider the case of the collapsing

shell already contracted inside of the black hole event horizon for simplicity. The collapsing

shell metric in two-dimension is given by [8, 17]

ds2 =

{

−dτ2 + dr2, r < R(τ)

−
(

1 − 2M
r

)

dt2 + dr2

1− 2M
r

, 2M > r > R(τ),
(14)

with the shell radius R(τ) defined by

R(τ) =

{

R0, τ < 0

R0 − vτ, τ > 0,
(15)
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We define the advanced and retarded null coordinates as

V = τ + r −R0, U = τ − r +R0,

v∗ = t+ r −R∗
0, u∗ = t− r∗ +R∗

0, (16)

with R∗
0 = R0 + 2Mln(R0/2M − 1) . The null coordinates are chosen such that the shell

begins to collapse at U = V = u∗ = v∗ = 0 [9]. In these coordinates, the metric is given by

ds2 =

{

−dUdV inside the shell,

− (1 − 2M/r) du∗dv∗ outside the shell.
(17)

For 2M > r > R(τ) , the Levi-Civita connection coefficients and gamma matrices are given

by

Γv∗
v∗v∗ = −Γu∗

u∗u∗ = 2M/r2, (18)

γv∗ = 1/2(1 − 2M/r)1/2(γ̄0 + γ̄1), (19)

γu∗ = 1/2(1 − 2M/r)1/2(γ̄0 − γ̄1), (20)

Γu∗ = Γv∗ =
M

2r2
γ̄0γ̄1. (21)

The Dirac equation for a massless neutrino becomes

[

(∂u∗ + ∂v∗) − γ̄0γ̄1(∂u∗ − ∂v∗) +
M

r2
γ̄0γ̄1

]

ψ = 0, (22)

with (1 + iγ5)ψ = 0 . The solution is given by

ψ = ω−1/2(r)
[

F̄u∗(Ω)exp(−iΩu∗) + Ḡv∗(Ω)exp(−iΩv∗)
]

, (23)

where F̄u∗ and Ḡv∗ are 4-component spinors

F̄u∗(Ω) =











1

i

0

0











, Ḡv∗(Ω) =











0

0

1

−i











. (24)

For r < R(τ) , the Dirac equation for a massless neutrino is given by

[

γ̄0(∂U + ∂V ) − γ̄1(∂U − ∂V )
]

Ψ = 0, (25)

with (1 + iγ5)Ψ = 0 . The solution is of the form

Ψ =











f(U)

if(U)

g(V )

−ig(V )











, (26)
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where f and g are arbitrary functions. The solutions (23) and (26) are connected by the

following relations at the shell boundary [8]

u∗ = −4Mln

(

1 −
vU

(1 + v)(R0 − 2M)

)

, v∗ = 4Mln

(

1 −
vV

(1 − v)(R0 − 2M)

)

. (27)

The massless neutrino field inside the black hole coming from infinity is given by

ψ+
Ω

= ω−1/2(r)
[

vr(Ω)exp(−iΩv) +A+
Ω
ur(Ω)exp(−iΩu)

]

. (28)

The normal mode on H+ (figure 2) becomes

ψ̄+
Ω

= ω−1/2(r)V̄ (Ω)eiΩR∗

0

∣

∣

∣

∣

1 −
vV

(1 − v)(R0 − 2M)

∣

∣

∣

∣

−i4MΩ

=
(

e2πMΩ
MφΩ + e−2πMΩ

inφΩ

)

/ (2cosh(4πMΩ))1/2 , (29)

where MφΩ vanishes outside the shell, V > (1 − v)(R0 − 2M)/v and inφΩ vanishes inside

the shell, V < (1−v)(R0−2M)/v . The above positive frequency solution implies that the

ground state |Φ0〉M⊗in in second-quantized fields is also an entangled state on HM ⊗Hin

and is given by

|Φ0〉M⊗in =
1

(1 + e−8πMΩ)1/2

∑

n=0,1

(−1)ne−4nπMΩ|nΩ〉M ⊗ |n̄Ω〉in. (30)

We propose this as a modifiedFBC for massless spinor fields. We shall now investigate its

consequences. We assume that the initial quantum state of the black hole belongs to a two

dimensional Hilbert space HM and |ψ〉M is the initial quantum state of the collapsing mat-

ter. Lets assume that the orthonormal bases for HM are {|0〉M , |1〉M} . In the following, we

consider only the single mode and drop the subscript Ω . TheFBC requires a maximally en-

tangled quantum state inHM⊗Hin , which is called the final boundary state and is given by

M⊗in〈Ψ| =
∑

n=0,1

A∗
nM 〈n| ⊗ in〈n̄|(SM ⊗ I),

An = (1 + exp(−8πMΩ))−1/2(−1)nexp(−4nπMΩ). (31)

where SM is a random unitary transformation. The initial matter state is given by

|ψ〉M = c0|0〉M + c1|1〉M . Then the initial matter state |ψ〉M evolves into a state in

HM ⊗ Hin ⊗ Hout , which is denoted by |Ψ0〉M⊗in⊗out = |ψ〉M ⊗ |Φ0〉in⊗out. The trans-

formation from the quantum state of collapsing matter to the state of outgoing Hawking

radiation is given by the following final state projection

|φ0〉out = M⊗in〈Ψ‖Ψ0〉M⊗in⊗out

= |A0|
2 (c0M 〈0|SM |0〉M + c1M 〈0|SM |1〉M ) |0〉out

+|A1|
2 (c0M 〈1|SM |0〉M + c1M 〈1|SM |1〉M ) |1〉out

= |A0|
2 (c0out〈0|Sout|0〉out + c1out〈0|Sout|1〉out) |0〉out

+|A1|
2 (c0out〈1|Sout|0〉out + c1out〈1|Sout|1〉out) |1〉out

– 6 –
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= (|A0|
2|0〉out〈0| + |A1|

2|1〉out〈1|)Sout(c0|0〉out + c1|1〉out)

= PSout|ψ〉out (32)

where M 〈j|SM |i〉M = out〈j|Sout|i〉out defines the unitary transformation Sout and where

P = |A0|
2|0〉out〈0| + |A1|

2|1〉out〈1| is a density operator (|A0|
2 + |A1|

2 = 1), which acts as

a weighted measurement.

This shows that the pure states always evolve to pure states under the black hole

evaporation irrespective of the boundary condition at the event horizon, thus indicating

that the black hole information paradox can be resolved for the case of fermions if the

initial matter state is pure state.

We now consider the case when the initial matter state is mixed state. The mixed state

is represented by the density operator ρM =
∑

n=0,1 Cn|n〉M 〈n| with
∑

n=0,1Cn = 1 . The

information content of the mixed state is found to be dependant on the mixedness which

is defined as Mx = Tr(ρM
2) [18]. In order to get the final density operator at evaporation,

we need to calculate M⊗in〈Ψ| [ρM ⊗ |Φ0〉in⊗out〈Φ0|] |Ψ〉M⊗in , which is given by

M⊗in〈Ψ| [ρM ⊗ |Φ0〉in⊗out〈Φ0|] |Ψ〉M⊗in

=
∑

i,j,k=0,1

Ci|Aj |
2|Ak|

2
(

M 〈j|SM |i〉M 〈i|SM
†|k〉M

)

|j〉out〈k|

=
∑

i,j,k=0,1

Ci|Aj |
2|Ak|

2
(

out〈j|Sout|i〉out〈i|Sout
†|k〉out

)

|j〉out〈k|

=





∑

j=0,1

|Aj |
2|j〉out〈j|



Sout





∑

i=0,1

Ci|i〉out〈i|



Sout
†





∑

k=0,1

|Ak|
2|k〉out〈k|





= DSoutρoutSout
†D, (33)

where D =
∑

n=0,1 |An|
2|n〉〈n| is the distortion operator. Further more, Tr(D) = 1 and

Tr(D2) ≤ 1 . The final density operator is obtained by normalizing eq. (33):

ρf =
DSoutρoutSout

†D

Tr (DSoutρoutSout
†D)

. (34)

The measure of mixedness is calculated as

Tr(ρf
2) = Tr(WρoutWρout), (35)

where

W =
SoutD

2Sout
†

Tr (DSoutρoutSout
†D)

. (36)

Then we obtain Tr(ρf
2) ≤ Tr(ρout

2) = Tr(ρM
2) since for all bounded linear operator X

and density operator T , we have the following inequality [19]

|Tr(XT )| ≤ ‖X‖‖T‖l, (37)

where ‖ · ‖ is an operator norm and ‖ · ‖l is a trace norm. This suggests that the measure

of mixedness is expected to decrease under evaporation or the information content is to
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decease. A mixed state arises due to the initial matter state being entangled with other

quantum systems when the black hole was about to form, and results from taking a partial

trace over these other systems. So we can regard black hole evolution as unitary.

The final-state boundary condition for the neutrino fields resembles that of the

bosons [4 – 9] so that the black hole evaporation can be represented by the unified final-state

boundary conditions. It is interesting to note that the final state projections described by

equations (31) and (32) resemble universal teleportation protocol [20, 21], where entan-

glement plus local measurement and unitary transformation enables teleportation. In this

protocol, the black hole evaporation is analogous to the measurement procedure done by

Alice. The major difference exists, however, between the black hole evaporation and the

quantum teleportation. In the latter, Bob needs a complete measurement results obtained

by the classical channel to reconstruct the quantum state. On the other hand, the for-

mer doesn’t need a classical channel because the evaporation is equivalent to sending the

random unitary transformation as well as the state itself.

We close by pointing out that the Hilbert space of the black hole will in general be a

tensor product of the two-dimensional Hilbert space for each fermionic mode times some

other (bosonic) Hilbert space corresponding to other matter. The full FBC will be the

fermionic condition we proposed in this paper combined with an FBC for other infalling

matter. The complete FBC will be of the form (M⊗in〈Ψ|)fermion ⊗ (M⊗in〈Ψ|)boson and so is

the Unruh state.
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